C++的std::string的“读时也拷贝”技术!

C++的std::string的读时也拷贝技术!

嘿嘿,你没有看错,我也没有写错,是读时也拷贝技术。什么?我的错,你之前听说写过时才拷贝,嗯,不错的确有这门技术,英文是Copy On Write,简写就是COW,非常’牛’!那么我们就来看看这个’牛’技术的效果吧。

我们先编写一段程序

#include <string>
#include <iostream>
#include <sys/time.h>
static long getcurrenttick()
{
    long tick ;
    struct timeval time_val;
    gettimeofday(&time_val , NULL);
    tick = time_val.tv_sec * 1000 + time_val.tv_usec / 1000 ;
    return tick;
}
int main( )
{
    string the_base(1024 * 1024 * 10, 'x');
    long begin =  getcurrenttick();
    for( int i = 0 ;i< 100 ;++i ) {
       string the_copy = the_base ;
    }
    fprintf(stdout,"耗时[%d] \n",getcurrenttick() - begin );
}

嗯,一个非常大的字符串,有10M字节的x,并且执行了100此拷贝。编译执行它,非常快,在我的虚拟机甚至不要1个毫秒。

现在我们来对这个string加点料!

int main(void) {
    string the_base(1024 * 1024 * 10, 'x');
    long begin =  getcurrenttick();
    for (int i = 0; i < 100; i++) {
        string the_copy = the_base;
        the_copy[0] = 'y';
    }
    fprintf(stdout,"耗时[%d] \n",getcurrenttick() - begin );
}

现在我们再编译并执行这断程序,居然需要4~5秒!哇!非常美妙的写时才拷贝技术,性能和功能的完美统一。

我们再来看看另外一种情况!

string original = "hello";
char & ref = original[0];
string clone = original;
ref = 'y';

我们生成了一个string,并保留了它首字符的引用,然后复制这个string,修改string中的首字符。因为写操作只是直接的修改了内存中的指定位置,这个string就根本不能感知到有写发生,如果写时才拷贝是不成熟的,那么我们将同时会修改original和clone两个string。那岂不是灾难性的结果?幸好上述问题不会发生。clone的值肯定是没有被修改的。看来COW就是非常的牛!

以上都证明了我们的COW技术非常牛!

有太阳就有黑暗,这句说是不是有点耳熟?

int main(void) {
    string the_base(1024 * 1024 * 10, 'x');
    fprintf(stdout,"the_base's first char is [%c]\n",the_base[0] );
    long begin =  getcurrenttick();
    for (int i = 0; i < 100; i++) {
        string the_copy = the_base;
    }
    fprintf(stdout,"耗时[%d] \n",getcurrenttick() - begin );
}

啊,居然也是4~5秒!你可能在想,我只是做了一个读,没有写嘛,这到底是怎么回事?难道还有读时也拷贝的技术!。

不错,为了避免了你通过[]操作符获取string内部指针而直接修改字符串的内容,在你使用了the_base[0]后,这个字符串的写时才拷贝技术就失效了。

C++标准的确就是这样的,C++标准认为,当你通过迭代器或[]获取到string的内部地址的时候,string并不知道你将是要读还是要写。这是它无法确定,为此,当你获取到内部引用后,为了避免不能捕获你的写操作,它在此时废止了写时才拷贝技术!

这样看来我们在使用COW的时候,一定要注意,如果你不需要对string的内部进行修改,那你就千万不要使用通过[]操作符和迭代器去获取字符串的内部地址引用,如果你一定要这么做,那么你就必须要付出代价。当然,string还提供了一些使迭代器和引用失效的方法。比如说push_back,等, 你在使用[]之后再使用迭代器之后,引用就有可能失效了。那么你又回到了COW的世界!比如下面的一个例子

int main( )
{
    struct timeval time_val;
    string the_base(1024 * 1024 * 10, 'x');
    long begin = 0 ;
    fprintf(stdout,"the_base's first char is [%c]\n",the_base[0] );
    the_base.push_back('y');
    begin = getcurrenttick();
    for( int i = 0 ;i< 100 ;++i ) {
        string the_copy = the_base ;
    }
    fprintf(stdout,"耗时[%d] \n",getcurrenttick() - begin );
}

一切又恢复了正常!如果对[]返回引用进行了操作又会发生情况呢,有兴趣的朋友可以试试!结果非常令人惊讶。

另外:上述例子是在linux环境下编译的,使用STL是GNU的STL。windows上我用的是vs2003,但是非常明显vs2003一点都不支持COW。

这篇文章出自http://ridiculousfish.com/blog/archives/2009/09/17/i-didnt-order-that-so-why-is-it-on-my-bill-episode-2/ 这里,我使用了它的例子。但是我重新自己组织了内容。

编写这篇文章的同时,我还参考了耗子的《标准C++类string的Copy-On-Write技术》一文

转自:http://coolshell.cn/articles/1443.html

原创文章,作者:s19930811,如若转载,请注明出处:http://www.178linux.com/2430

(0)
s19930811s19930811
上一篇 2015-04-03 21:59
下一篇 2015-04-03 22:07

相关推荐

  • linux进程管理

    进程概念 内核的功用:进程管理、文件系统、网络功能、内存管理、驱动程序、 安全功能等 Process:  运行中的程序的一个 副本,是被 载入内存的一个指令集合     进程ID (Process ID,PID)号码被用来标记各个进程  &…

    Linux干货 2016-09-12
  • 磁盘管理2——文件系统挂载和swap文件系统以及磁盘管理工具

    文件系统的使用: 首先要“挂载”:mount命令和umount命令 根文件系统之外的其他文件系统要想能够被访问,都必须通过“关联”至根文件系统上的某个目录来实现,此管理操作即为“挂载”,此目录为“挂载点” 挂载点:MOUNT_POINT,用于作为另一个文件系统的访问入口     (1)事先存在   …

    Linux干货 2016-08-29
  • 函数式编程

    当我们说起函数式编程来说,我们会看到如下函数式编程的长相: 函数式编程的三大特性: immutable data 不可变数据:像Clojure一样,默认上变量是不可变的,如果你要改变变量,你需要把变量copy出去修改。这样一来,可以让你的程序少很多Bug。因为,程序中的状态不好维护,在并发的时候更不好维护。(你可以试想一下如果你的程序有个复杂的状态,当以后别…

    Linux干货 2016-08-15
  • linux中软链接和硬链接简单说明

    linux链接文件 在 Linux 上文件系统被分成两个部分:数据 (user data) 与元数据 (metadata)。数据,即文件数据块 (data block),数据块是记录文件真实内容的地方;而元数据则是文件的附加属性,如:文件大小、创建时间、所有者等信息。在 Linux 中,元数据中的 inode 号(inode 是文件元数据的一部分但其并不包含…

    Linux干货 2016-12-05
  • awk 的相关知识

    awk 介绍,基本用法,变量,格式化,操作符,条件判断,循环,数组,函数等

    2018-01-01