运维监控大数据的提取与分析

本文内容整理来自【敏捷运维大讲堂】蒋君伟老师的线上直播分享。分别从以下3个维度来分享:1、云时代监控分析的窘境;2、使用标签标记监控数据的维度;3、监控数据应用场景。

云时代监控分析的窘境

在虚拟化与容器技术广泛应用的情况下,运维对象大规模地增长,监控平台每天存储的指标都以亿计,所以监控数据如今已经成了大数据。传统的监控工具在这种场景下,对于数据的提取分析,已经力不从心,反而成为了运维的负担。

我们用一个典型的互联网档案分析应用举例说明:

1.png

这个应用支持容灾与负载均衡,它部署在三个数据中心,并同时提供服务;

应用按微服务思想设计,内部划分为多个技术组件,包括APIGateway、档案、登记、通知、支付及一些数据库服务

技术组件可弹性扩缩容

这样的应用目前很常见,它有这样一些特征:

变:架构变、实例变

由于研发每周都在迭代,可能随时都加增加新的技术组件种类,如增加一个MongoDB作为文档类数据存储;同时由于弹性扩缩容,每个技术组件的实例时刻也在变,比如下图,就减少了一个档案服务,增加了一个支付服务:

2.png

这给监控带来了难题:如何监控经常变化的目标? 答案是:监控配置自动化,随基础架构扩展,并标记监控目标。

在Zabbix与UYUN Monitor产品中,都可以使用自动部署与发现来实现自动扩展监控。Zabbix主要使用标记与自动分组的方式,而Monitor则使用标签的方式:

3.png

多:种类多、实例多

一个公司可能存在30多个这样的集群应用,它使用上百种技术组件,数千个虚拟机或容器实例。如此大的规模,带来了巨大的监控复杂度,新的难题是:我们变得更难预测的故障诊断场景!

我们举几个具体的场景来说明这点:

场景1:我想要知道所有的档案查询次数

档案查询次数是衡量整个应用业务量的一个重要指标,这个场景的难点是档案服务是多实例的,并且分布在多个数据中心。针对这个场景,我们的解题思路是:合计所有数据中心的所有档案服务的查询API调用次数,即下图中所有红色部份:

4.png

使用Zabbix时,可以按如下步骤:

创建一个档案服务group,包含所有数据中心的所有档案服务

创建一个item,使用汇聚 groupfunc 合计 group 内的所有查询API调用次数

使用UYUM Monitor时,则配置如下字符串即可:

m=sum:查询API调用次数{技术组件=档案服务}

实现效果:

5.png

场景2:我想知道APIGateway TCP连接数三个中心的各自占比

通过连接数占比,我们可以分析出各个数据中心的负载是否均衡。其解题思路是:独立合计每个数据中心的APIGateway TCP连接数,即如下红色部份:

6.png

使用Zabbix时,可以按如下步骤配置:

创建三个数据中心APIGateway group g1. 杭州东 APIGateway group g2. 杭州西 APIGateway group g3. 宁波 APIGateway group

创建对应item 分别统计其TCP连接数合计

使用UYUM Monitor时,还是配置如下字符串即可:

m=sum:TCP连接数{数据中心=*,技术组件=APIGateway}

实现效果:

7.png

场景3:我想知道各种服务的主机CPU平均利用率趋势

通过将一些技术组件的CPU利用率在一个趋势图中显示,我们可以利用指标间的正相关性,来分析组件间的影响,比如档案服务的CPU利用率升高时,提供其数据的Redis服务CPU使用率也在升高。其解题思路为:分别为每种服务求得其主机CPU平均利用率,并在一个趋势图中展示。

使用Zabbix时,可以按如下步骤配置:

创建各个技术组件对应的group,包含:是APIGateway、档案、登记、通知、支付、MySQL等等

创建对应item 分别统计其主机CPU利用率平均值

而使用UYUM Monitor时,依然是配置如下字符串:

起始时间=30分钟前&m=avg:主机CPU利用率{技术组件=*}

实现效果:

8.png

使用标签标记监控数据的维度

我们可以看出,Zabbix与Monitor针对一些数据的提取方式是不一样的。Zabbix更多的是使用Group分组的方式,来梳理某些维度同类型的信息,这种方式是我们过去惯用的,组织一棵树来抽象世界。

但是,世界其实是平的,各种事物实际上是平等存在的,只是它们有着各自的特性而已。所以,我们所需要的只是按需用这些特性标签来提取它们。举例来说,下图就可以看到两个主机的各种标签:

9.png

使用UYUN Monitor时,可以按很多种不同的方式来建立标签,包括:

1、安装代理时指定

2、查看主机信息时指定

10.png

11.png

3、以及通过自定义脚本推送指标时指定 推送到本机代理:

12.png

在为监控对象建立好这些标签后,我们就可以充分使用标签带来的便利,随需查询,不预设场景。

监控数据应用场景

新一代的监控系统,其本质实际上是一个监控大数据收集与分析平台,它不限定监控底层的数据来源以便全面覆盖运维对象,通过海量存储与灵活的数据提取能力,为上层的各种运维场景,提供如大屏可视化、报警、分析报表等功能。

13.png

UYUN Monitor 也提供了多种上层的运维分析功能,包括:

1、个性丰富的仪表盘,能灵活提取各类监控数据按多种方式展现

14.png

2、指标的阈值检查策略,能对集群指标进行综合汇聚与告警

15.png

3、第三方数据查询OpenAPI,提供数据的二次消费入口

16.png

可以看出,面对云时代,我们对监控系统的要求已经产生了变化,监控系统实际上已经转变 为一个监控大数据收集与分析平台,它不限定监控底层的数据来源以便全面覆盖运维对象, 通过海量存储与灵活的数据提取能力,为上层的各种运维场景,提供如大屏可视化、报警、 分析报表等功能。

本次主题《监控大数据的提取与分析》的分享希望对大家有所帮助,优云敏捷运维大讲堂面向运维领域的技术分享、最佳实践将不定期与大家见面,敬请期待。

讲师介绍

蒋君伟

•  IT运维领域资深专家,优云软件产品总监,拥有10年运维实战经验

•  先后研发了网络管理、系统管理、CMDB、ITSM等产品,并成功建设了多个全国性的网络运维管理项目

优云全线产品免费试用:https://www.uyun.cn

原创文章,作者:uyunops,如若转载,请注明出处:http://www.178linux.com/65931

(0)
uyunopsuyunops
上一篇 2017-01-08 22:05
下一篇 2017-01-09 10:03

相关推荐

  • 企业实时同步方案—-Sersync介绍

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://nolinux.blog.51cto.com/4824967/1433109 Sersync 项目利用 Inotify 和 Rsync 技术实现对服务器数据实时同步的解决方案,其中 Inotify 用于监控 Sersync…

    Linux干货 2016-08-15
  • 软件包管理器之一——RPM介绍及应用

    一、前言:     在没有软件包管理器前,用户都是通过源代码的方式来安装软件。但是我们很容易发现,在每次安装软件时都必须对操作系统的境、编译的参数进行对应的编译,并且操作过程很是复杂,这对于不熟悉操作系统的朋友来说真心困难,那么有没有一款软件能让用户能很简单的安装所需的软件呢?    &n…

    Linux干货 2015-07-20
  • 数据结构应用详解-

    概述 最小生成树——无向连通图的所有生成树中有一棵边的权值总和最小的生成树 拓扑排序 ——由偏序定义得到拓扑有序的操作便是拓扑排序。建立模型是AOV网 关键路径——在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度,路径长度最长的路径叫做关键路径(Critical Path)。 最短路径——最短路径问题是…

    Linux干货 2015-04-07
  • day6总结

    主要内容: useradd与usermod对比 groupadd与groupmod对比 passwd与chage对比 gpasswd与groupmems对比 切换用户 chown与chgrp用法 一般权限与特殊权限 chmod用法   useradd创建用户的初始信息存放在/etc/login.defs和/etc//default/useradd文…

    系统运维 2016-08-08
  • 第二周

    第二周 1. Linux上的文件管理类命令都有哪些,其常用的使用方法及其相关示例演示。 cp 复制文件和目录语法格式:cp [OPTION]… [-T] SOURCE DESTcp [OPTION]… SOURCE… DIRECTORYcp [OPTION]… -t DIRECTORY SOURCE&#8230…

    Linux干货 2017-07-21
  • MySQL优化大全

     1. 优化SQL   1)通过show status了解各种sql的执行频率         show status like 'Com_%'        了解 Com_select,Com_in…

    Linux干货 2015-04-13