Hadoop Hive与Hbase整合+thrift

1.  简介

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

Hive与HBase的整合功能的实现是利用两者本身对外的API接口互相进行通信,相互通信主要是依靠hive_hbase-handler.jar工具类, 大致意思如图所示:

1.gif

2.  Hive项目介绍

项目结构

2.jpg

Hive配置文件介绍
•hive-site.xml      hive的配置文件
•hive-env.sh        hive的运行环境文件
•hive-default.xml.template  默认模板
•hive-env.sh.template     hive-env.sh默认配置
•hive-exec-log4j.properties.template   exec默认配置
• hive-log4j.properties.template log默认配置
hive-site.xml
< property>
  <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://localhost:3306/hive?createData baseIfNotExist=true</value>
  <description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
  <description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
    <value>root</value>
   <description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
   <value>test</value>
   <description>password to use against metastore database</description>
</property>
  

hive-env.sh
•配置Hive的配置文件路径
•export HIVE_CONF_DIR= your path
•配置Hadoop的安装路径
•HADOOP_HOME=your hadoop home

我们按数据元的存储方式不同安装。

3.  使用Derby数据库安装

什么是Derby安装方式•Apache Derby是一个完全用java编写的数据库,所以可以跨平台,但需要在JVM中运行•Derby是一个Open source的产品,基于Apache License 2.0分发•即将元数据存储在Derby数据库中,也是Hive默认的安装方式

1 .Hadoop和Hbase都已经成功安装了

Hadoop集群配置:http://blog.csdn.net/hguisu/article/details/723739

hbase安装配置:http://blog.csdn.net/hguisu/article/details/7244413

2. 下载hive

hive目前最新的版本是0.12,我们先从http://mirror.bit.edu.cn/apache/hive/hive-0.12.0/ 上下载hive-0.12.0.tar.gz,但是请注意,此版本基于是基于hadoop1.3和hbase0.94的(如果安装hadoop2.X ,我们需要修改相应的内容)

3. 安装:

tar zxvf hive-0.12.0.tar.gz 

 cd hive-0.12.0

4. 替换jar包,与hbase0.96和hadoop2.2版本一致。

   由于我们下载的hive是基于hadoop1.3和hbase0.94的,所以必须进行替换,因为我们的hbse0.96是基于hadoop2.2的,所以我们必须先解决hive的hadoop版本问题,目前我们从官网下载的hive都是用1.几的版本编译的,因此我们需要自己下载源码来用hadoop2.X的版本重新编译hive,这个过程也很简单,只需要如下步骤:
    1. 先从http://svn.apache.org/repos/asf/hive/branches/branch-0.12 或者是http://svn.apache.org/repos/asf/hive/trunk   我们下载到/home/hadoop/branch-0.12下。
    2.  branch-0.12是使用ant编译,trunk下面是使用maven编译,如果未按照maven,需要从http://maven.apache.org/download.cgi 下载maven,或者使用yum install maven。然后解压出来并在PATH下把$maven_home/bin加入或者使用链接(ln -s /usr/local/bin/mvn $maven_home/bin ).然后就是使用mvn 命令。运行mvn -v就能知道maven是否配置成功        3.   配置好maven开始编译hive,我们cd到下载源码的branch-0.12 目录,然后运行mvn clean package -DskipTests -Phadoop-2开始编译
    4.编译好后的新jar包是存放在各个模块下的target的,这些新jar包的名字都叫hive-***-0.13.0-SNAPSHOT.jar,***为hive下的模块名,我们需要运行命令将其拷贝到hive-0.12.0/lib下    find /home/hadoop/branch-0.12  -name "hive*SNAPSHOT.jar"|xargs -i cp {} /home/hadoop/hive-0.12.0/lib。拷贝过去后我们比照着删除原lib下对应的0.12版本的jar包。      5. 接着我们同步hbase的版本,先cd到hive0.12.0/lib下,将hive-0.12.0/lib下hbase-0.94开头的那两个jar包删掉,然后从/home/hadoop/hbase-0.96.0-hadoop2/lib下hbase开头的包都拷贝过来     find /home/hadoop/hbase-0.96.0-hadoop/lib -name "hbase*.jar"|xargs -i cp {} ./
    6. 基本的同步完成了,重点检查下zookeeper和protobuf的jar包是否和hbase保持一致,如果不一致,

       拷贝protobuf.**.jar和zookeeper-3.4.5.jar到hive/lib下。

     7.如果用mysql当原数据库,      别忘了找一个mysql的jdbcjar包mysql-connector-java-3.1.12-bin.jar也拷贝到hive-0.12.0/lib下

5. 配置hive

•进入hive-0.12/conf目录•依据hive-env.sh.template,创建hive-env.sh文件•cp  hive-env.sh.template hive-env.sh•修改hive-env.sh•指定hive配置文件的路径•export HIVE_CONF_DIR=/home/hadoop/hive-0.12/conf•指定Hadoop路径• HADOOP_HOME=/home/hadoop/hadoop-2.2.0

hive-site.xml
<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>  
<configuration>  
  
<!-- Hive Execution Parameters -->  
  
<property>  
  <name>hive.exec.reducers.bytes.per.reducer</name>  
  <value>1000000000</value>  
  <description>size per reducer.The default is 1G, i.e if the input size is 10G, it will use 10 reducers.</description>  
</property>  
  
<property>  
  <name>hive.exec.reducers.max</name>  
  <value>999</value>  
  <description>max number of reducers will be used. If the one  
        specified in the configuration parameter mapred.reduce.tasks is  
        negative, hive will use this one as the max number of reducers when  
        automatically determine number of reducers.</description>  
</property>  
  
<property>  
  <name>hive.exec.scratchdir</name>  
  <value>/hive/scratchdir</value>  
  <description>Scratch space for Hive jobs</description>  
</property>  
  
<property>  
  <name>hive.exec.local.scratchdir</name>  
  <value>/tmp/${user.name}</value>  
  <description>Local scratch space for Hive jobs</description>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionURL</name>  
  <value>jdbc:derby:;databaseName=metastore_db;create=true</value>  
  <description>JDBC connect string for a JDBC metastore</description>  
</property>  
  
<property>  
  <name>javax.jdo.option.ConnectionDriverName</name>  
  <value>org.apache.derby.jdbc.EmbeddedDriver</value>  
  <description>Driver class name for a JDBC metastore</description>  
</property>  
  
<property>  
  <name>javax.jdo.PersistenceManagerFactoryClass</name>  
  <value>org.datanucleus.api.jdo.JDOPersistenceManagerFactory</value>  
  <description>class implementing the jdo persistence</description>  
</property>  
  
<property>  
  <name>javax.jdo.option.DetachAllOnCommit</name>  
  <value>true</value>  
  <description>detaches all objects from session so that they can be used after transaction is committed</description>  
</property>  
  
<property>  
  <name>javax.jdo.option.ConnectionUserName</name>  
  <value>APP</value>  
  <description>username to use against metastore database</description>  
</property>  
  
<property>  
  <name>javax.jdo.option.ConnectionPassword</name>  
  <value>mine</value>  
  <description>password to use against metastore database</description>  
</property>  
  
<property>  
  <name>hive.metastore.warehouse.dir</name>  
  <value>/hive/warehousedir</value>  
  <description>location of default database for the warehouse</description>  
</property>  
  
  
<property>  
 <name>hive.aux.jars.path</name>  
  <value>  
  file:///home/hadoop/hive-0.12.0/lib/hive-ant-0.13.0-SNAPSHOT.jar,  
  file:///home/hadoop/hive-0.12.0/lib/protobuf-java-2.4.1.jar,  
  file:///home/hadoop/hive-0.12.0/lib/hbase-client-0.96.0-hadoop2.jar,  
  file:///home/hadoop/hive-0.12.0/lib/hbase-common-0.96.0-hadoop2.jar,  
  file:///home/hadoop/hive-0.12.0/lib/zookeeper-3.4.5.jar,  
  file:///home/hadoop/hive-0.12.0/lib/guava-11.0.2.jar  
  </value>  
</property>

Hive使用Hadoop,这意味着你必须在PATH里面设置了hadoop路径,或者导出export HADOOP_HOME=<hadoop-install-dir>也可以。另外,你必须在创建Hive库表前,在HDFS上创建/tmp和/hive/warehousedir(也称为hive.metastore.warehouse.dir的),并且将它们的权限设置为chmod g+w。完成这个操作的命令如下:
$ $HADOOP_HOME/bin/hadoop fs -mkdir /tmp
$ $HADOOP_HOME/bin/hadoop fs -mkdir /hive/warehousedir
$ $HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp
$ $HADOOP_HOME/bin/hadoop fs -chmod g+w/hive/warehousedir
    我同样发现设置HIVE_HOME是很重要的,但并非必须。
$ export HIVE_HOME=<hive-install-dir>
    在Shell中使用Hive命令行(cli)模式:
$ $HIVE_HOME/bin/hive

5. 启动hive

1).单节点启动

#bin/hive -hiveconf hbase.master=master:490001

2) 集群启动:

#bin/hive -hiveconf hbase.zookeeper.quorum=node1,node2,node3

如何hive-site.xml文件中没有配置hive.aux.jars.path,则可以按照如下方式启动。

bin/hive --auxpath /usr/local/hive/lib/hive-hbase-handler-0.96.0.jar, /usr/local/hive/lib/hbase-0.96.jar, /usr/local/hive/lib/zookeeper-3.3.2.jar -hiveconf hbase.zookeeper.quorum=node1,node2,node3

启动直接#bin/hive 也可以。

6 测试hive

•建立测试表pokeshive> CREATE TABLE pokes (foo INT, bar STRING);
OK
Time taken: 1.842 seconds
hive> show tables;                             
OK
pokes
Time taken: 0.182 seconds, Fetched: 1 row(s)
 •数据导入pokes

hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO pokse

然后查看hadoop的文件:bin/hadoop dfs -ls /hive/warehousedir
看到新增一个文件:drwxr-xr-x   – hadoop supergroup     0  09:06 /hive/warehousedir/pokes

注:使用derby存储方式时,运行hive会在当前目录生成一个derby文件一个metastore_db目录。这种存储方式的弊端是在同一个目录下同时只能有一个hive客户端能使用数据库,否则报错。

4.  使用MYSQL数据库的方式安装

安装MySQL
• Ubuntu 采用apt-get安装
• sudo apt-get install mysql-server
• 建立数据库hive
• create database hivemeta
• 创建hive用户,并授权
• grant all on hive.* to hive@'%'  identified by 'hive';  
• flush privileges;  

我们直接修改hive-site.xml就可以啦。

修改hive-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
  <name>hive.exec.scratchdir</name>
  <value>/hive/scratchdir</value>
  <description>Scratch space for Hive jobs</description>
</property>
<property>
  <name>hive.exec.local.scratchdir</name>
  <value>/tmp/${user.name}</value>
  <description>Local scratch space for Hive jobs</description>
</property>
<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://192.168.1.214:3306/hiveMeta?createDatabaseIfNotExist=true</value>
  <description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.jdbc.Driver</value>
  <description>Driver class name for a JDBC metastore</description>
</property>
<property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>hive</value>
  <description>username to use against metastore database</description>
</property>
<property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>hive</value>
  <description>password to use against metastore database</description>
</property>
<property>
  <name>hive.metastore.warehouse.dir</name>
  <value>/hive/warehousedir</value>
  <description>location of default database for the warehouse</description>
</property>
<property>
 <name>hive.aux.jars.path</name>
  <value>
  file:///home/hadoop/hive-0.12.0/lib/hive-ant-0.13.0-SNAPSHOT.jar,
  file:///home/hadoop/hive-0.12.0/lib/protobuf-java-2.4.1.jar,
  file:///home/hadoop/hive-0.12.0/lib/hbase-client-0.96.0-hadoop2.jar,
  file:///home/hadoop/hive-0.12.0/lib/hbase-common-0.96.0-hadoop2.jar,
  file:///home/hadoop/hive-0.12.0/lib/zookeeper-3.4.5.jar,
  file:///home/hadoop/hive-0.12.0/lib/guava-11.0.2.jar
  </value>
</property>

jdbc:mysql://192.168.1.214:3306/hiveMeta?createDatabaseIfNotExist=true其中hiveMeta是mysql的数据库名createDatabaseIfNotExist没有就自动创建

本地mysql启动hive :

直接运行#bin/hive 就可以。

远端mysql方式,启动hive:

服务器端(192.168.1.214上机master上):

    在服务器端启动一个 MetaStoreServer,客户端利用 Thrift 协议通过 MetaStoreServer 访问元数据库。

   启动hive,这个又可以分为启动metastore和hiveserver,其中metastore用于和mysql之间的表结构创建或更新时通讯,hiveserver用于客户端连接,这这个都要启动,具体的启动命令:启动metastore:hive –service metastore   -hiveconf hbase.zookeeper.quorum=node1,node2,node3 -hiveconf hbase.zookeeper.property.clientPort=2222 (远程mysql需要启动)
启动hiveservice:hive –service hiveserver  -hiveconf hbase.zookeeper.quorum=node1,node2,node3 -hiveconf hbase.zookeeper.property.clientPort=2222 (启动服务,这样jdbc:hive就能连上,默认10000端口,后面的部分一定要带上,否则用eclipse连接不上的) 起来后我们在eclipse就可以使用jdbc:hive来连接了。如        Class.forName("org.apache.hadoop.hive.jdbc.HiveDriver");        Connection conn = DriverManager.getConnection("jdbc:hive://server1:10000/hiveMeta","root","111111");        return conn;其实使用上和普通的数据库已经很相似了,除了建表的语句有一些差别。
当然你也可以在hive-0.12.0/bin运行hive  -hiveconf hive.root.logger=DEBUG,console -hiveconf hbase.zookeeper.quorum=server2,server3 -hiveconf hbase.zookeeper.property.clientPort=2222其中 hbase.zookeeper.property.clientPort就是hbase-site.xml配置的zookeeper的端口号。

客户端hive 的hive-site.xml配置文件:

<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>  
   
<configuration>  
  
<property>  
  <name>hive.metastore.warehouse.dir</name>  
  <value>/hive/warehousedir</value>  
</property>  
   
<property>  
  <name>hive.metastore.local</name>  
  <value>false</value>  
</property>  
  
<property>  
  <name>hive.metastore.uris</name>  
  <value>thrift://192.168.1.214:9083</value>  
</property>  
  
</configuration>

这个就是使用thrift访问的端口配置。thrift://192.168.1.214:9083就是hive元数据访问路径

进入hive客户端,运行show tables;
至此,可以在linux用各种shell来测试,也可以通过eclipse连接到hive来测试,和通过jdbc连接普通数据库一致hive的服务端和客户端都可以放在同一台服务器上:
hive-site.xml

<?xml version="1.0"?>  
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>  
<configuration>  
  
  
<property>  
  <name>hive.exec.scratchdir</name>  
  <value>/hive/scratchdir</value>  
  <description>Scratch space for Hive jobs</description>  
</property>  
  
  
<property>  
  <name>hive.exec.local.scratchdir</name>  
  <value>/tmp/${user.name}</value>  
  <description>Local scratch space for Hive jobs</description>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionURL</name>  
  <value>jdbc:mysql://192.168.1.214:3306/hiveMeta?createDatabaseIfNotExist=true</value>  
  <description>JDBC connect string for a JDBC metastore</description>  
</property>  
  
  
<property>  
  <name>javax.jdo.option.ConnectionDriverName</name>  
  <value>com.mysql.jdbc.Driver</value>  
  <description>Driver class name for a JDBC metastore</description>  
</property>  
  
  
<property>  
  <name>javax.jdo.option.ConnectionUserName</name>  
  <value>hive</value>  
  <description>username to use against metastore database</description>  
</property>  
  
  
<property>  
  <name>javax.jdo.option.ConnectionPassword</name>  
  <value>hive</value>  
  <description>password to use against metastore database</description>  
</property>  
  
  
<property>  
  <name>hive.metastore.warehouse.dir</name>  
  <value>/hive/warehousedir</value>  
  <description>location of default database for the warehouse</description>  
</property>  
  
<property>  
 <name>hive.aux.jars.path</name>  
  <value>  
  file:///home/hadoop/hive-0.12.0/lib/hive-ant-0.13.0-SNAPSHOT.jar,  
  file:///home/hadoop/hive-0.12.0/lib/protobuf-java-2.4.1.jar,  
  file:///home/hadoop/hive-0.12.0/lib/hbase-client-0.96.0-hadoop2.jar,  
  file:///home/hadoop/hive-0.12.0/lib/hbase-common-0.96.0-hadoop2.jar,  
  file:///home/hadoop/hive-0.12.0/lib/zookeeper-3.4.5.jar,  
  file:///home/hadoop/hive-0.12.0/lib/guava-11.0.2.jar  
  </value>  
  
<property>    
  <name>hive.metastore.uris</name>    
  <value>thrift://192.168.1.214:9083</value>    
</property>    
</property>

4.  与Hbase整合

之前我们测试创建表的都是创建本地表,非hbase对应表。现在我们整合回到hbase。

  1. 创建hbase识别的数据库:  

CREATE TABLE hbase_table_1(key int, value string)  
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")  
TBLPROPERTIES ("hbase.table.name" = "xyz");

 

hbase.table.name 定义在hbase的table名称

hbase.columns.mapping 定义在hbase的列族 

在hbase 下也能看到,两边新增数据都能实时看到。

可以登录Hbase去查看数据了

#bin/hbase shell
hbase(main):001:0> describe 'xyz'  
hbase(main):002:0> scan 'xyz'  
hbase(main):003:0> put 'xyz','100','cf1:val','www.360buy.com'

这时在Hive中可以看到刚才在Hbase中插入的数据了。

2.使用sql导入数据

如果要insert 与hbase整合的表,不能像本地表一样load,需要利用已有的表进行。insert overwrite hbase_table_1 hivetest select * from pokes  注意两个的类型要一致,否则用insert overwrite table hivetest select * from table_hive; 导不进去数据

使用sql导入hbase_table_1:

hive> INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86;

3 hive访问已经存在的hbase

使用CREATE EXTERNAL TABLE:

CREATE EXTERNAL TABLE hbase_table_2(key int, value string)        
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")  
TBLPROPERTIES("hbase.table.name" = "some_existing_table");

内容参考:http://wiki.apache.org/hadoop/Hive/HBaseIntegration

5.  问题

bin/hive 执行show tables 报错:

Unable to instantiate org.apache.hadoop.hive.metastore.HiveMetaStoreClient

如果是使用Derby数据库的安装方式,查看

<property>
  <name>hive.metastore.warehouse.dir</name>
  <value>/hive/warehousedir</value>
  <description>location of default database for the warehouse</description>
</property>

配置是否正确,

或者

<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:derby:;databaseName=metastore_db;create=true</value>
  <description>JDBC connect string for a JDBC metastore</description>
</property>

是否有权限访问。

如果配置了mysql的Metastore方式,检查的权限:

 bin/hive  -hiveconf hive.root.logger=DEBUG,console  

然后show tables 就会看到ava.sql.SQLException: Access denied for user 'hive'@'××××8' (using password: YES) 之类从错误消息。

执行

CREATE TABLE hbase_table_1(key int, value string)  
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")  
TBLPROPERTIES ("hbase.table.name" = "xyz");

报错:

FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:org.apache.hadoop.hbase.MasterNotRunningException: Retried 10 times

出现这个错误的原因是引入的hbase包和hive自带的hive包冲突,删除hive/lib下的 hbase-0.94.×××.jar, OK了。

同时也要移走hive-0.12**.jar 包。

执行

hive>select uid from user limit 100;

java.io.IOException: Cannot initialize Cluster. Please check your configuration for mapreduce.framework.name and the correspond server addresses.

解决:修改$HIVE_HOME/conf/hive-env.sh文件,加入

export HADOOP_HOME=hadoop的安装目录

5.  通过thrift访问hive(使用php做客户端)

php连接hive执行sql查询

使用php连接hive的条件:

1. 下载thrift

wget http://mirror.bjtu.edu.cn/apache//thrift/0.9.1/thrift-0.9.1.tar.gz

2. 解压

tar -xzf thrift-0.9.1.tar.gz

3 .编译安装:

如果是源码编译的,首先要使用./boostrap.sh创建文件./configure ,我们这下载的tar包,自带有configure文件了。((可以查阅README文件))

If you are building from the first time out of the source repository, you will
need to generate the configure scripts.  (This is not necessary if you
downloaded a tarball.)  From the top directory, do:
./bootstrap.sh

./configure

1  需要安装thrift  安装步骤

#  ./configure –without-ruby 

不要使用ruby,

make ; make install

如果没有安装libevent libevent-devel的应该先安装这两个依赖库yum -y install libevent libevent-devel

其实Thrift就是使用来生成客户端和服务器端代码的。在这里没用到。

安装好后启动hive thrift

# ./hive –service hiveserver >/dev/null 2>/dev/null &

查看hiveserver默认端口是否打开10000   如果打开表示成功,在官网wiki有介绍文章:https://cwiki.apache.org/confluence/display/Hive/HiveServer

Thrift Hive Server

HiveServer is an optional service that allows a remote client to submit requests to Hive, using a variety of programming languages, and retrieve results. HiveServer is built on Apache ThriftTM(http://thrift.apache.org/), therefore it is sometimes called the Thrift server although this can lead to confusion because a newer service named HiveServer2 is also built on Thrift.

Thrift's interface definition language (IDL) file for HiveServer is hive_service.thrift, which is installed in $HIVE_HOME/service/if/.

WARNING!

Icon

HiveServer cannot handle concurrent requests from more than one client. This is actually a limitation imposed by the Thrift interface that HiveServer exports, and can't be resolved by modifying the HiveServer code.
HiveServer2 is a rewrite of HiveServer that addresses these problems, starting with Hive 0.11.0. See HIVE-2935.

Once Hive has been built using steps in Getting Started, the Thrift server can be started by running the following:

0.8 and Later

$ build/dist/bin/hive --service hiveserver --help
usage: hiveserver
 -h,--help                        Print help information
    --hiveconf <property=value>   Use value for given property
    --maxWorkerThreads <arg>      maximum number of worker threads,
                                  default:2147483647
    --minWorkerThreads <arg>      minimum number of worker threads,
                                  default:100
 -p <port>                        Hive Server port number, default:10000
 -v,--verbose                     Verbose mode
 
$ bin/hive --service hiveserver

下载php客户端包:

其实hive-0.12包中自带的php lib,经测试,该包报php语法错误。命名空间的名称竟然是空的。

我上传php客户端包:http://download.csdn.net/detail/hguisu/6913673(源下载http://download.csdn.net/detail/jiedushi/3409880)

php连接hive客户端代码

<?php  
// php连接hive thrift依赖包路径  
ini_set('display_errors', 1);  
error_reporting(E_ALL);  
$GLOBALS['THRIFT_ROOT'] = dirname(__FILE__). "/";  
// load the required files for connecting to Hive  
require_once $GLOBALS['THRIFT_ROOT'] . 'packages/hive_service/ThriftHive.php';  
require_once $GLOBALS['THRIFT_ROOT'] . 'transport/TSocket.php';  
require_once $GLOBALS['THRIFT_ROOT'] . 'protocol/TBinaryProtocol.php';  
// Set up the transport/protocol/client  
$transport = new TSocket('192.168.1.214', 10000);  
$protocol = new TBinaryProtocol($transport);  
  
//$protocol = new TBinaryProtocolAccelerated($transport);  
  
$client = new ThriftHiveClient($protocol);  
$transport->open();  
  
// run queries, metadata calls etc  
  
$client->execute('show tables');  
var_dump($client->fetchAll());  
$transport->close();  
  
?>

转自:http://blog.csdn.net/hguisu/article/details/7282050

原创文章,作者:s19930811,如若转载,请注明出处:http://www.178linux.com/3079

(0)
s19930811s19930811
上一篇 2015-04-13
下一篇 2015-04-13

相关推荐

  • 第四周作业

    1、复制/etc/skel目录为/home/tuser1,要求/home/tuser1及其内部文件的属组和其它用户均没有任何访问权限。 [root@wlm ~]# useradd tuser1 [root@wlm ~]# cp -r etc/skel/ /home/tuser1/…

    Linux干货 2016-11-21
  • 运维面试题, 不知是否正确的答案

    1、简述TCP三次握手四次挥手过程及各过程中客户端和服务器端的状态。 握手: client 发送请求SYN到 server; 状态:server;初始状态为LISTEN,client 发送SYN后变为SYN_SENT server 发送ACK回应,并发送SYN请求到 client;状态:服务器收到SYN后,变为SYN_RCVD,发送ACK+SYN后,变为ES…

    Linux干货 2016-06-23
  • yum用法第一篇-简介及常见用法使用总结

    一、简介     yum( 全称为:Yellow dog Updater, Modified),是红帽(RedHat)家族(RedHat、Fedora、CentOS)中的前端shell的软件包管理器,主要基于对RPM包的管理,能够根据配置文件(类似于svn资源库配置文件)从指定的服务器自动下载RPM包进行安装,其最大的优势就是可…

    Linux干货 2015-09-22
  • 第六周作业

    请详细总结vim编辑器的使用并完成以下练习题 基本模式:     编辑模式,命令模式     输入模式     末行模式         内置的命令行接口 打开…

    Linux干货 2017-02-14
  • 系统管理中的三大利刃(htop glances dstat)

    工欲善事情,必先利其器,生产环境中的服务器在处理请求并生成回应数据的时间主要消耗在服务器端,包括了众多的环节,如何全面了解我们linux服务器的CPU使用率、使用时间、内存占用比例、磁盘IO数据、网络相关数据等等众多指标,保证我们的linux服务器顺利完成每一个请求,怎能没有几个趁手的利刃,而今天就让我们见识一下系统管理中三大利刃。 相传一把三尺长的软剑,叫…

    Linux干货 2015-11-18
  • NoSQL理论基础及安装、基本操作

    30分钟开始 分布式系统理论: CAP: 一致性 可用性 分区容错性     MongoDB: 安装 crud 索引 副本集 分片   NoSQL:非关系型、分布式、不提供ACID功能 技术特点: 1、简单数据模型 2、元数据和应用数据分离(分不同服务器存储) 3、弱一致性   优势: 1、避免不必要的复杂性 2、高吞…

    2016-11-27