海量数据处理算法—Bit-Map

1. Bit Map算法简介

        来自于《编程珠玑》。所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。

2、 Bit Map的基本思想

        我们先来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,如下图:
                                                       1.jpg


然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0x01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为一(如下图):
 

                                                      2.jpg


然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下: 
 

                                                    3.jpg


然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。

优点:

1.运算效率高,不许进行比较和移位;

2.占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M。 
缺点:

       所有的数据不能重复。即不可对重复的数据进行排序和查找。    

算法思想比较简单,但关键是如何确定十进制的数映射到二进制bit位的map图。

3、 Map映射表

假设需要排序或者查找的总数N=10000000,那么我们需要申请内存空间的大小为int a[1 + N/32],其中:a[0]在内存中占32为可以对应十进制数0-31,依次类推: 
bitmap表为: 
a[0]———>0-31 
a[1]———>32-63 
a[2]———>64-95 
a[3]———>96-127 
………. 
那么十进制数如何转换为对应的bit位,下面介绍用位移将十进制数转换为对应的bit位。 

3、 位移转换 

申请一个int一维数组,那么可以当作为列为32位的二维数组,

               |                           32位                                       |

int a[0]    |0000000000000000000000000000000000000|

int a[1]    |0000000000000000000000000000000000000|

………………

int a[N]   |0000000000000000000000000000000000000|

例如十进制0,对应在a[0]所占的bit为中的第一位: 00000000000000000000000000000001 
0-31:对应在a[0]中 
i =0                            00000000000000000000000000000000 
temp=0                     00000000000000000000000000000000 
answer=1                 00000000000000000000000000000001 


i =1                            00000000000000000000000000000001 
temp=1                     00000000000000000000000000000001 
answer=2                 00000000000000000000000000000010 


i =2                            00000000000000000000000000000010 
temp=2                     00000000000000000000000000000010 
answer=4                 00000000000000000000000000000100 


i =30                              00000000000000000000000000011110 
temp=30                       00000000000000000000000000011110 

answer=1073741824  01000000000000000000000000000000 


i =31                               00000000000000000000000000011111 
temp=31                         00000000000000000000000000011111 
answer=-2147483648 10000000000000000000000000000000 

32-63:对应在a[1]中 
i =32                            00000000000000000000000000100000 
temp=0                        00000000000000000000000000000000 
answer=1                    00000000000000000000000000000001 


i =33                            00000000000000000000000000100001 
temp=1                       00000000000000000000000000000001 
answer=2                    00000000000000000000000000000010 


i =34                            00000000000000000000000000100010 
temp=2                        00000000000000000000000000000010 
answer=4                    00000000000000000000000000000100 


i =61                              00000000000000000000000000111101 
temp=29                       00000000000000000000000000011101 
answer=536870912    00100000000000000000000000000000 


i =62                               00000000000000000000000000111110 
temp=30                        00000000000000000000000000011110 
answer=1073741824  01000000000000000000000000000000 


i =63                                00000000000000000000000000111111 
temp=31                         00000000000000000000000000011111 
answer=-2147483648  10000000000000000000000000000000
浅析上面的对应表,分三步: 
1.求十进制0-N对应在数组a中的下标: 
十进制0-31,对应在a[0]中,先由十进制数n转换为与32的余可转化为对应在数组a中的下标。比如n=24,那么 n/32=0,则24对应在数组a中的下标为0。又比如n=60,那么n/32=1,则60对应在数组a中的下标为1,同理可以计算0-N在数组a中的下标。 

2.求0-N对应0-31中的数: 

十进制0-31就对应0-31,而32-63则对应也是0-31,即给定一个数n可以通过模32求得对应0-31中的数。 

3.利用移位0-31使得对应32bit位为1. 

找到对应0-31的数为M, 左移M位:2^M. 然后置1.

由此我们计算10000000个bit占用的空间:

1byte = 8bit

1kb = 1024byte

1mb = 1024kb

占用的空间为:10000000/8/1024/1024mb。

大概为1mb多一些。

3、 扩展 

      Bloom filter可以看做是对bit-map的扩展 

4、 Bit-Map的应用

      1)可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下。

       2)去重数据而达到压缩数据

5、 Bit-Map的具体实现

c语言实现:

#define BITSPERWORD 32  
#define SHIFT 5  
#define MASK 0x1F  
#define N 10000000  
  
int a[1 + N/BITSPERWORD];//申请内存的大小  
  
  
//set 设置所在的bit位为1  
void set(int i) {          
    a[i>>SHIFT] |=  (1<<(i & MASK));   
}  
//clr 初始化所有的bit位为0  
void clr(int i) {          
    a[i>>SHIFT] &= ~(1<<(i & MASK));   
}  
//test 测试所在的bit为是否为1  
int  test(int i){   
    return a[i>>SHIFT] &   (1<<(i & MASK));   
}  
  
int main()  
{   int i;  
    for (i = 0; i < N; i++)  
        clr(i);    
    while (scanf("%d", &i) != EOF)  
        set(i);  
    for (i = 0; i < N; i++)  
        if (test(i))  
            printf("%d\n", i);  
    return 0;  
}

注明: 左移n位就是乘以2的n次方,右移n位就是除以2的n次方

解析本例中的void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }
1)  i>>SHIFT: 
其中SHIFT=5,即i右移5为,2^5=32,相当于i/32,即求出十进制i对应在数组a中的下标。比如i=20,通过i>>SHIFT=20>>5=0 可求得i=20的下标为0;
2)  i & MASK: 
其中MASK=0X1F,十六进制转化为十进制为31,二进制为0001 1111,i&(0001 1111)相当于保留i的后5位。 
比如i=23,二进制为:0001 0111,那么 
                         0001 0111 
                   &    0001 1111 = 0001 0111 十进制为:23 
比如i=83,二进制为:0000 0000 0101 0011,那么 
                          0000 0000 0101 0011 
                     &   0000 0000 0001 0000 = 0000 0000 0001 0011 十进制为:19 
i & MASK相当于i%32。 
3) 1<<(i & MASK) 
相当于把1左移 (i & MASK)位。 
比如(i & MASK)=20,那么i<<20就相当于: 
         0000 0000 0000 0000 0000 0000 0000 0001 << 20 
       =0000 0000 0001 0000 0000 0000 0000 0000 

注意上面 “|=”.

在博文:位运算符及其应用 提到过这样位运算应用:

 将int型变量a的第k位清0,即a=a&~(1<<k)
 将int型变量a的第k位置1, 即a=a|(1<<k)

这里的将  a[i/32] |= (1<<M)); 第M位置1 .

4) void set(int i) {        a[i>>SHIFT]  |=  (1<<(i & MASK)); }等价于:

void set(int i)   
{   
   a[i/32] |= (1<<(i%32));   
}

即实现上面提到的三步:

1.求十进制0-N对应在数组a中的下标: n/32 

2.求0-N对应0-31中的数: N%32=M

3.利用移位0-31使得对应32bit位为1: 1<<M,并置1;

php实现是一样的:

<?php    
  error_reporting(E_ERROR);  
define("MASK", 0x1f);//31    
define("BITSPERWORD",32);     
define("SHIFT",5);    
define("MASK",0x1F);   
define("N",1000);   
  
 $a = array();   
//set 设置所在的bit位为1    
function set($i) {     
    global $a;         
    $a[$i>>SHIFT] |=  (1<<($i & MASK));     
}    
//clr 初始化所有的bit位为0    
function clr($i) {            
    $a[$i>>SHIFT] &= ~(1<<($i & MASK));     
}    
//test 测试所在的bit为是否为1    
function test($i){    
    global $a;    
    return $a[$i>>SHIFT] & (1<<($i & MASK));     
}    
$aa = array(1,2,3,31, 33,56,199,30,50);    
while ($v =current($aa))  {  
   set($v);   
   if(!next($aa)) {  
       break;  
   }  
}  
foreach ($a as $key=>$v){  
    echo $key,'=', decbin($v),"\r\n";  
}

然后我们打印结果:

0=11000000000000000000000000001110
1=1000001000000000000000010
6=10000000

32位表示,实际结果一目了然了,看看1,2,3,30,31, 33,50,56,199数据所在的具体位置:

       31    30                                                                                        3     2     1

       海量数据处理算法—Bit-Map  海量数据处理算法—Bit-Map                                                                                        海量数据处理算法—Bit-Map  海量数据处理算法—Bit-Map  海量数据处理算法—Bit-Map

0=    1     1    00       0000   0000   0000   0000    0000     0000   1     1   1  0

                          56                 50                                                33

                          海量数据处理算法—Bit-Map               海量数据处理算法—Bit-Map                                                  海量数据处理算法—Bit-Map   
1=  0000     0001    0000   0100   0000    0000     0000    0010

                                                                               199

                                                                               海量数据处理算法—Bit-Map
6=  0000  0000    0000   0000   0000    0000    1000    0000

【问题实例】

已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上,在遍历这些数的时候,如果对应位置的值是0,则将其置为1;如果是1,将其置为2;如果是2,则保持不变。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。

实现:

// TestWin32.cpp : Defines the entry point for the console application.  
#include "stdafx.h"  
  
#include<memory.h>    
  
//用char数组存储2-Bitmap,不用考虑大小端内存的问题    
unsigned char flags[1000]; //数组大小自定义     
unsigned get_val(int idx)  {   
//  |    8 bit  |  
//  |00 00 00 00|  //映射3 2 1 0  
//  |00 00 00 00|  //表示7 6 5 4  
//  ……  
//  |00 00 00 00|  
  
    int i = idx/4;  //一个char 表示4个数,  
    int j = idx%4;    
    unsigned ret = (flags[i]&(0x3<<(2*j)))>>(2*j);    
    //0x3是0011 j的范围为0-3,因此0x3<<(2*j)范围为00000011到11000000 如idx=7 i=1 ,j=3 那么flags[1]&11000000, 得到的是|00 00 00 00|  
    //表示7 6 5 4  
   return ret;    
}    
        
unsigned set_val(int idx, unsigned int val)  {    
    int i = idx/4;    
    int j = idx%4;    
    unsigned tmp = (flags[i]&~((0x3<<(2*j))&0xff)) | (((val%4)<<(2*j))&0xff);    
    flags[i] = tmp;    
    return 0;    
}    
unsigned add_one(int idx)    
{    
    if (get_val(idx)>=2) {  //这一位置上已经出现过了??  
        return 1;    
    }  else  {    
        set_val(idx, get_val(idx)+1);    
        return 0;    
    }    
}    
        
//只测试非负数的情况;    
//假如考虑负数的话,需增加一个2-Bitmap数组.    
int a[]={1, 3, 5, 7, 9, 1, 3, 5, 7, 1, 3, 5,1, 3, 1,10,2,4,6,8,0};    
        
int main()   {    
    int i;    
    memset(flags, 0, sizeof(flags));    
            
    printf("原数组为:");    
    for(i=0;i < sizeof(a)/sizeof(int); ++i)  {    
        printf("%d  ", a[i]);    
        add_one(a[i]);    
    }    
    printf("\r\n");    
        
    printf("只出现过一次的数:");    
    for(i=0;i < 100; ++i)  {    
        if(get_val(i) == 1)    
            printf("%d  ", i);    
        }    
    printf("\r\n");    
      
    return 0;    
}

转自:http://blog.csdn.net/hguisu/article/details/7880288

原创文章,作者:s19930811,如若转载,请注明出处:http://www.178linux.com/2749

(0)
s19930811s19930811
上一篇 2015-11-10
下一篇 2015-11-16

相关推荐

  • bash脚本编程实例

    bash脚本编程实例 1.写一个脚本,判断当前系统上所有用户的shell是否为可登录的shell(即用户的shell不是/sbin/nologin),分别统计这两类用户的个数(通过字符串比较来实现) #!/bin/bash cat /etc/passwd|awk -F: ‘BEGIN{nologin=0;login=0}{if($NF==”/sbin/nol…

    Linux干货 2017-08-28
  • shell脚本之变量、运算、条件测试。

    概述 程序:指令+数据 程序编程风格: 过程式:以指令为中心,数据服务于指令 对象式:以数据为中心,指令服务于数据 shell程序:提供了编程能力,解释执行 计算机:运行二进制指令; 编程语言: 低级:             汇编 高级:…

    Linux干货 2016-08-15
  • sed

    sed Stream EDitor, 行编辑器 sed是一种流编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾。文件内容并没有改变,除非使用重定向存储输出。 Sed主要用来自动…

    Linux干货 2017-04-26
  • 马哥教育网络班22期第二周课程练习1-未闻花名

    1、Linux管理文件和目录的命令 命令 功能 命令 功能 pwd 显示当前目录 ls 查看目录下的内容 cd 改变所在目录 cat 显示文件的内容 grep 在文件中查找某字符 cp 复制文件 touch 创建文件 mv 移动文件 rm 删除文件 rmdir 删除目录 1.1 pwd命令 该命令的英文解释为print working directory(打…

    Linux干货 2016-08-22
  • 马哥教育网络班22期+第七周课程练习

    1、创建一个10G分区,并格式为ext4文件系统;   (1) 要求其block大小为2048, 预留空间百分比为2, 卷标为MYDATA, 默认挂载属性包含acl; [root@localhost ~]# fdisk /dev/sdb Welcome to fdisk (uti…

    Linux干货 2016-11-07
  • 文本处理工具

    文本处理工具 1、查看文件内容 cat -v 显示非打印字符       -E 显示$      -T 显示TAB      -n 显示行号      -s 将连续的重复空行变成一行      -A = -vE…

    2017-07-30