你的数据根本不够大,别老扯什么Hadoop了


本文原名“Don’t use Hadoop when your data isn’t that big ”,出自有着多年从业经验的数据科学家Chris Stucchio,纽约大学柯朗研究所博士后,搞过高频交易平台,当过创业公司的CTO,更习惯称自己为统计学者。对了,他现在自己创业,提供数据分析、推荐优化咨询服务,他的邮件是:stucchio@gmail.com 。


     有人问我,“你在大数据和Hadoop方面有多少经验?”我告诉他们,我一直在使用Hadoop,但是很少处理几TB以上数据的任务 。我基本上只是一个大数据新手——知道概念,写过代码,但是没有大规模经验。

      他们又问我,“你能使用Hadoop做简单的group by(分组)和sum(统计)吗?”我说当然可以,但我会说需要看具体的文件格式。

他们给我一个U盘,里面存储600MB数据(他们所有的数据,而不是样本数据)。不知道为什么,我用pandas.read_csvPandas是一种Python数据分析库)解决方案,而不是Hadoop完成了这个任务后,他们显得很不满意。

      Hadoop实际上是有很多局限性的。Hadoop可以运行一个通用的计算,下面我用伪码进行说明:

Scala风格的伪码:

collection.flatMap( (k,v) => F(k,v) ).groupBy( _._1 ).map( _.reduce( (k,v) => G(k,v) ) )

使用SQL风格的伪码表示

SELECT G(...) FROM table GROUP BY F(...)

      或者想我多年解释一样:

目标:统计计算图书馆书籍的数量  
Map:你统计奇数书架上书的数量,我统计偶数书架上书的数量。(做统计的人越多,统计出结果越快,就是机器越多,效率越高)  
Reduce:把我们每个人单独统计的结果数据加在一起。

        我们所做的只有两个:F(k,v)和G(k,v),除非要在中间步骤中做性能优化,其他一切都是固定的。

    在Hadoop里,所有计算都必须按照一个map、一个group by、一个aggregate或者这种计算序列来写。这和穿上紧身衣一样,多憋得慌啊。许多计算用其他模型其实更适合。穿上紧身衣(使用hadoop)的唯一原因就是,可以扩展到极大的数据集。可大多数情况,你的数据集很可能根本远远够不上那个数量级。

    可是呢,因为Hadoop和大数据是热词,世界有一半的人都想穿上紧身衣,即使他们实际不需要Hadoop。

一、如果我的数据量是几百兆,Excel可能没法加载它
        对于Excel来说的“很大的数据”并非大数据,其实还有其它极好的工具可以使用——我喜欢的是基于Numpy库之上Pandas。它可以将几百MB数据以高效的向量化格式加载到内存,在我购买已3年的笔记本上,一眨眼的功夫,Numpy就能完成1亿次浮点计算。Matlab和R也是极好的工具。

      Pandas构建于Numpy库之上,可以以矢量格式的方式有效地把数百兆的数据载入到内存中。在我购买已3年的笔记本上,它可以用Numpy在一眨眼的功夫把1亿的浮点数乘在一起。Matlab和R也是极好的工具。
       因此,对于几百兆的数据量,典型的做法是写一个简单的Python脚本逐行读取,处理,然后写到了一个文件就行了

二、可我的数据是10GB呢?
       我买了台新笔记本,它有16GB的内存(花$141.98)和256GB的SSD(额外200美元)。,如果在Pandas里加载一个10GB的csv文件,实际在内存里并没有那么大(内存不是占有10G)——可以将 “17284932583” 这样的数值串存为4位或者8位整数,“284572452.2435723”存为8位双精度。

    最坏的情况下你还可以不同时将所有数据都一次加载到内存里。

三、可我的数据是100GB、500GB或1TB呢?

     一个2T的硬盘才94.99美元,4T是169.99。买一块,加到桌面PC或者服务器上,然后装上PostgreSQL来解决它

四、Hadoop << SQL或Python脚本

       在计算的表达能力来说,Hadoop比SQL差。Hadoop里能写的计算,在SQL或者简单的Python脚本都可以更轻松地写出来。
       SQL是一个直观的查询语言,适合做业务分析,业务分析师和程序员都很常用。SQL查询非常简单,而且还非常快——只有数据库使用了正确的索引,要花几秒钟的sql查询都不太常见。

     Hadoop没有索引的概念,Hadoop只有全表扫描,而且Hadoop抽象层次太多了——我之前的项目尽在应付Java内存错误( java memory errors)、内存碎片和集群竞用了,而这些时间远多于实际的数据分析工作。

      如果你的数据并不是像SQL表那样的结构化数据(比如纯文本、JSON对象、二进制对象),通常是直接写一个小的Python脚本或者Ruby脚本逐行处理更直接。保存到多个文件,然后逐个处理即可,SQL不适用的情况下,从编程来说Hadoop也没那么糟糕,但相比Python脚本仍然没有什么优势。

    除了难以编程,Hadoop还一般总是比其他技术方案要慢。只要索引用得好,SQL查询非常快。比如要计算join,PostgreSQL只需查看索引(如果有),然后查询所需的每个键。而Hadoop呢,必须做全表扫描,然后重排整个表。排序通过多台机器之间分片可以加速,但也带来了跨多机数据流处理的开销。如果要处理二进制文件,Hadoop必须反复访问namenode。而简单的Python脚本只要反复访问文件系统即可。

五、我的数据超过了5TB

     只能使用Hadoop,而无需做过多的选择。

    你的命可真苦——只能苦逼地折腾Hadoop了,没有太多其他选择(可能还能用许多硬盘容量的高富帅机器来扛),而且其他选择往往贵得要命(脑海中浮现出IOE等等字样……)。

    用Hadoop唯一的好处是扩展。如果你的数据是一个数TB的单表,那么全表扫描是Hadoop的强项。此外的话(如果你没有这样大数据量的表),请关爱生命,尽量远离Hadoop。它带来的烦恼根本不值,用传统方法既省时又省力。

六、Hadoop是一个极好的工具

         我并不讨厌Hadoop,当我用其它工具不能很好处理数据时我会选择Hadoop。另外,我推荐使用Scalding,不要使用Hive或Pig。Scalding支持使用Scala语言来编写Hadoop任务链,隐藏了其下的MapReduce。

转自:http://blog.csdn.net/hguisu/article/details/12585383

原创文章,作者:s19930811,如若转载,请注明出处:http://www.178linux.com/2621

(0)
上一篇 2015-04-04 21:39
下一篇 2015-04-04 21:48

相关推荐

  • 马哥教育21期网络班—第六周课程+练习—-成长进行时

    请详细总结vim编辑器的使用并完成以下练习题 1、复制/etc/rc.d/rc.sysinit文件至/tmp目录,将/tmp/rc.sysinit文件中的以至少一个空白字符开头的行的行首加#; [root@localhost ~]# cp /etc/rc.d/rc.sysinit /tmp/rc.sysinit&nbs…

    Linux干货 2016-08-03
  • ☞SELinux

    ☞SELinux 概述 SELinux(Secure Enhanced Linux)是美国国家安全局(NSA)和SCC开发的Linux的一个强制访问控制的安全模块。2000年以GNU GPL发布,Linux内核2.6版本后集成在内核中。它能够限制权限,进程只能访问那些在他的任务中所需要文件。 Selinux是根据最小权限模型去限制进程在对象(如文件,目录,端…

    Linux干货 2016-09-18
  • N26 第七周作业

    1、创建一个10G分区,并格式为ext4文件系统;(1) 要求其block大小为2048, 预留空间百分比为2, 卷标为MYDATA, 默认挂载属性包含acl; [root@localhost ~]# fdisk /dev/sdb Welcome to fdisk (util-linux 2.23.2). Changes will remain in mem…

    Linux干货 2017-02-07
  • Memcache存储大数据的问题

    Memcache存储大数据的问题   huangguisu       Memcached存储单个item最大数据是在1MB内,如果数据超过1M,存取set和get是都是返回false,而且引起性能的问题。 我们之前对排行榜的数据进行缓存,由于排行榜在我们所有sql select…

    Linux干货 2015-05-05
  • 软链接与硬链接的区别

      这两牵扯到链接,那么先介绍以下链接。   在文件系统中,有一种可以把不同的文件相连接到一起的机制,这个机制叫做链接。通俗的话来说就是打开两个不同的文件夹,其实进去的是同一个。它可以把一个文件用不同的名字和路径来表示出来。系统通过inode(索引节点,文件唯一标识)来识别是否为同一个文件,无论系统上有有多少个链接,在磁盘上只有一个唯一的…

    2017-05-25
  • 软件包管理

    1.程序包管理器 源代码–>目标二进制格式–>组织称为一个或有限几个“包”文件;     安装、升级、卸载、查询、校验 程序包管理器: debian(Ubuntu):dpt,工具:dpkg,程序包以“.deb”结尾 redhat:redhat package manager&nbsp…

    Linux干货 2016-08-21