树的遍历和排序

树的遍历和排序

python的树的遍历和堆排序:
二叉树的遍历:
遍历:迭代所有元素一遍
树的遍历:对树中所有元素不重复地访问一遍,也称作扫描

广度优先遍历:
层序遍历

深度优先遍历:
前序遍历
中序遍历
后序遍历

遍历序列:
将树中所有元素遍历一遍后,得到的元素的序列。将层次结构转换成了线性结构

层序遍历:
按照树的层次,从第一层开始,自左向右遍历元素

遍历序列:
ABCDEFGHI

二叉树的遍历:
深度优先遍历:
1、设树的根结点为D,左子树为L,右子树为R,且要求L一定在R之前,则有下面几种遍历方式

2、前序编列,也叫先序遍历,也叫先根遍历,DLR

3、中序遍历,也叫中根遍历,LDR

4、后序遍历,也叫后根遍历,LRD

前序遍历DLR:
1、从根结点开始,先左子树后右子树
2、每个子树内部依然是先根结点,再左子树后右子树,递归遍历
3、遍历序列:
A BDGH CEIF

中序遍历:LDR
1、从根结点的左子树开始遍历,然后是根结点,再右子树
2、每个子树内部,也是先左子树,后根结点,再右子树,递归遍历

遍历序列:
这个一定要分清楚是左子树还是右子树,因为中间遍历的时候会有差别

后序遍历LRD:
1、先左子树,后右子树,再根结点
2、每个子树内部依然是先左子树,后右子树,再根结点,递归遍历

遍历序列:GHDB IEFC

堆Heap:
1、堆是一个完全二叉树
2、每个非叶子结点都要大于或者等于其左右孩子结点的值称为大顶堆
3、每个非叶子结点都要小于或者等于其左右孩子结点的值称为小顶堆
4、根结点一定是大顶堆中的最大值,一定是小顶堆中的最小值

堆排序Heap Sort:
大顶堆:
1、完全二叉树的每个非叶子结点都要大于或者等于其左右孩子结点的值称为大顶堆
2、根结点一定是大顶堆中的最大值

小顶堆:
1、完全二叉树的每个非叶子结点都要小于或者等于其左右孩子结点的值称为小顶堆
2、根结点一定是小顶堆中的最小值

构建完全二叉树:
1、待排序数字为,30,20,80,40,50,10,60,70,90
2、构建一个完全二叉树存放数据,并根据性质5对元素编号,放入顺序的结构中
3、构建一个列表为[0,30,20,80,40,50,10,60,70,90]

构建大顶堆的核心算法:
1、度数为2的结点A,如果它的左右孩子结点的最大值比它大的,将这个最大值和该结点交换
2、度数为1的结点A,如果它的左孩子的值大于它,则交换
3、如果结点A被交换到新的位置,还需要和其孩子结点重复上面的过程

构建大顶堆–起点结点的选择:
1、完全二叉树的最后一个结点的双亲结点开始,即最后一层的最右边叶子结点的父结点开始

2、结点树为n,则起始结点的编号为n//2(性质5)

构建大顶堆–下一个结点的选择:
从起始结点开始向左找其同层结点,到头后再从上一层的最右边结点开始继续向左逐个查找,直至根结点

大顶堆的目标:
确保每个结点的都比左右(指的是孩子)结点的值大

排序:
1、将大顶堆根结点这个最大值和最后一个叶子结点交换,那么最后一个叶子结点就是最大值,将这个叶子结点排除在待排序结点之外
2、从根结点开始(新的根结点),重新调整为大顶堆后,重复上一步

总结:
1、是利用堆性质的一种选择排序,在堆顶选出最大值或者最小值
2、时间复杂度
堆排序的时间复杂度为O(nlogn)
由于堆排序对原始记录的排序状态并不敏感,因此无论是最好、最坏和平均时间复杂度均为O(nlogn)
空间复杂度:
只是使用了一个交换用的空间,空间复杂度就是O(1)

稳定性:
不稳定的排序算法

#思路,第一行取一个,第二行取2个,第三行取3个,以此类推,投影来思考一个栅格系统
#代码实现

 

import math

#居中对齐方案
def print_tree(array,unit_width=2):
length = len(array) #9
depth = math.ceil(math.log2(length + 1)) #4

 

index = 0
width = 2**depth – 1 #行宽15
for i in range(depth): # 0 1 2 3
for j in range(2**i): #0:0 1:0,1 2:0,1,2,3 3:0~7
#居中打印,后面追加一个空格
print(‘{:^{}}’.format(array[index],width * unit_width),end=’ ‘*unit_width)
index += 1
if index >= length:
break
width = width // 2
print()
#测试
print_tree([x + 1 for x in range(29)])

 

import math

 

#投影格实现
def print_tree(array):
”’
前空格 元素间
1 7 0
2 3 7
3 1 3
4 0 1

”’
index = 1
depth = math.ceil(math.log2(len(array))) #因为补0了,不然应该是math.ceil(math.log2(len(array)+1))
sep = ‘ ‘
for i in range(depth):
offset = 2 ** i
print(sep * (2 ** (depth – i – 1) – 1),end=”)
line = array[index:index + offset]
for j, x in enumerate(line):
print(“{:>{}}”.format(x,len(sep),end=”))
interval = 0 if i == 0 else 2 ** (depth – i) – 1
if j < len(line) -1:
print(sep * interval,end=”)
index += offset
print()
print_tree([x +1 for x in range(100)])

本文来自投稿,不代表Linux运维部落立场,如若转载,请注明出处:http://www.178linux.com/88038

(2)
泰谷子泰谷子
上一篇 2017-10-23 16:23
下一篇 2017-10-24 09:13

相关推荐

  • SSH端口转发

      SSH 会自动加密和解密所有SSH 客户端与服务端之间的网络数据。但是,SSH 还能够将其他TCP 端口的网络数据通过SSH 链接来转发,并且自动提供了相应的加密及解密服务。这一过程也被叫做“隧道”(tunneling),这是因为SSH 为其他TCP 链接提供了一个安全的通道来进行传输而得名。例如,Telnet,SMTP,LDAP 这些TCP 应用均能够…

    2017-09-10
  • 磁盘管理进阶–RAID–LVM初步应用

    配置配额系统 综述   在内核中执行   以文件系统为单位启用   对不同组或者用户的策略不同 根据块或者节点进行限制 执行软限制( soft limit)硬限制( hard limit) 初始化 分区挂载选项: usrquota、 grpquota 在创建好分区后, 对/etc/fstab 进行修改 , 加入 后加进来的分区的…

    Linux干货 2016-09-01
  • 推荐-DNS BIND初探

    DNS BIND DNS BIND 正向解析 反向解析 从服务器 子域授权 转发 view DNS 什么是DNS? DNS是domain name system,域名系统的简写,负责实现域名与IP的转换。 DNS的功能是什么? DNS能够将IP地址与域名相互双向转换,能够实现域名访问。 DNS的历史:  1. 初期网络…

    2016-04-19
  • 无痛之ext3升ext4[原创]

    一台文件存储服务器单目录下子目录已经突破31998数限制,造成无法继续创建子目录,服务器系统环境为CentOS5.4 内核版本为2.6.18。解决方案只能是升级到ext4文件系统,首先到https://ext4.wiki.kernel.org/index.php/Ext4_Howto查了一下资料,文中的第一句便是“Ext4 was released as a…

    Linux干货 2015-03-27
  • 高级文件系统管理

    高级文件系统管理 本章内容  设定文件系统配额  设定和管理软RAID设备  配置逻辑卷  设定LVM快照  btrfs文件系统 配置配额系统 综述 • 在内核中执行 • 以文件系统为单位启用 • 对不同组或者用户的策略不同    &nb…

    Linux干货 2016-09-01
  • 编译内核

     编译内核: 步骤: (1) 准备好开发环境 (2) 获取目标主机上硬件设备的相关信息 (3) 获取目标主机系统功能的相关信息         例如:需要启用相应的文件系统 (4) 获取内核源代码包 www.kernel.org  

    Linux干货 2018-01-01