网络及TCP

为什么要使用分层网络模型

    降低复杂性

    标准化接口

    简化模块化设计

    确保技术的互操作性

    加快发展速度

    简化教学

OSI模型的七层结构:(必须记住)

网络及TCP

网络及TCP网络及TCP网络及TCP网络及TCP网络及TCP网络及TCP网络及TCP

数据封装

网络及TCP

数据解封

网络及TCP

以太网桥

交换式以太网的优势:
    扩展了网络带宽
    分割了网络冲突域,使网络冲突被限制在最小的范围内
    交换机作为更加智能的交换设备,能够提供更多用户所要求的功能:优先级、虚拟网、远程检测……
以太网桥工作原理

以太网桥监听数据帧中源MAC地址,学习MAC,建立MAC表
    对于未知MAC地址,网桥将转发到除接收该帧的端口之外的所有端口
    当网桥接到一个数据帧时,如果该帧的目的位于接收端口所在网段上,它就过滤掉该数据帧;如果目的MAC地址在位于另外一个端口,网桥就将该帧转发到该端口
    当网桥接到广播帧时候,它立即转发到除接收端口之外的所有其他端口

TCP/IP 协议栈

Transmission Control Protocol
    /Internet Protocol
    传输控制协议/因特网互联协议
TCP/IP是一个Protocol Stack,包括TCP、IP、UDP、ICMP、RIP、TELNET、FTP、SMTP、ARP等许多协议
最早发源于美国国防部(缩写为DoD)的因特网的前身ARPA网项目,1983年1月1日,TCP/IP取代了旧的网络控制协议NCP,成为今天的互联网和局域网的基石和标准。由互联网工程任务组负责维护。
共定义了四层
和ISO参考模型的分层有对应关系

TCP/IP 协议栈和 OSI 模型

网络及TCP

TCP特性

    工作在传输层面向连接协议
    全双工协议
    半关闭
    错误检查
    将数据打包成段,排序
    确认机制
    数据恢复,重传
    流量控制,滑动窗口
    拥塞控制,慢启动和拥塞避免算法

TCP包头

网络及TCP

    源端口、目标端口:计算机上的进程要和其他进程通信是要通过计算机端口的,而一个计算机端口某个时刻只能被一个进程占用,所以通过指定源端口和目标端口,就可以知道是哪两个进程需要通信。源端口、目标端口是用16位表示的,可推算计算机的端口个数为2^16个
    序列号:表示本报文段所发送数据的第一个字节的编号。在TCP连接中所传送的字节流的每一个字节都会按顺序编号。由于序列号由32位表示,所以每2^32个字节,就会出现序列号回绕,再次从0 开始
    确认号:表示接收方期望收到发送方下一个报文段的第一个字节数据的编号。也就是告诉发送发:我希望你(指发送方)下次发送的数据的第一个字节数据的编号是这个确认号。也就是告诉发送方:我希望你(指发送方)下次发送给我的TCP报文段的序列号字段的值是这个确认号
    数据偏移:由于TCP首部包含一个长度可变的选项部分,所以需要这么一个值来指定这个TCP报文段到底有多长。它指出TCP 报文段的数据起始处距离TCP 报文段的起始处有多远,即TCP报文段的首部长度。该字段的单位是32位字,即:4个字节
    URG:表示本报文段中发送的数据是否包含紧急数据。后面的紧急指针字段(urgent pointer)只有当URG=1时才有效
    ACK:表示是否前面的确认号字段是否有效。ACK=1,表示有效。只有当ACK=1时,前面的确认号字段才有效。TCP规定,连接建立后,ACK必须为1,带ACK标志的TCP报文段称为确认报文段
    PSH:提示接收端应用程序应该立即从TCP接收缓冲区中读走数据,为接收后续数据腾出空间。如果为1,则表示对方应当立即把数据提交给上层应用,而不是缓存起来,如果应用程序不将接收到的数据读走,就会一直停留在TCP接收缓冲区中
    RST:如果收到一个RST=1的报文,说明与主机的连接出现了严重错误(如主机崩溃),必须释放连接,然后再重新建立连接。或者说明上次发送给主机的数据有问题,主机拒绝响应,带RST标志的TCP报文段称为复位报文段
    SYN:在建立连接时使用,用来同步序号。当SYN=1,ACK=0时,表示这是一个请求建立连接的报文段;当SYN=1,ACK=1时,表示对方同意建立连接。SYN=1,说明这是一个请求建立连接或同意建立连接的报文。只有在前两次握手中SYN才置为1,带SYN标志的TCP报文段称为同步报文段
    FIN:表示通知对方本端要关闭连接了,标记数据是否发送完毕。如果FIN=1,即告诉对方:“我的数据已经发送完毕,你可以释放连接了”,带FIN标志的TCP报文段称为结束报文段
窗口大小:表示现在运行对方发送的数据量,也就是告诉对方,从本报文段的确认号开始允许对方发送的数据量
    校验和:提供额外的可靠性
    紧急指针:标记紧急数据在数据字段中的位置。
    选项部分:其最大长度可根据TCP首部长度进行推算。TCP首部长度用4位表示,选项部分最长为:(2^4-1)*4-20=40字节
TCP三次握手(必记)

网络及TCP

第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认

第二次握手:服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态

第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手

TCP四次挥手(必记)

网络及TCP

第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence Number和Acknowledgment Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了

第二次分手:主机2收到了主机1发送的FIN报文段,向主机1回一个ACK报文段,Acknowledgment Number为Sequence Number加1;主机1进入FIN_WAIT_2状态;主机2告诉主机1,我“同意”你的关闭请求

第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入LAST_ACK状态

第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了

上图名词解释:

CLOSED 没有任何连接状态
LISTEN 侦听状态,等待来自远方TCP端口的连接请求
SYN-SENT 在发送连接请求后,等待对方确认
SYN-RECEIVED 在收到和发送一个连接请求后,等待对方确认
ESTABLISHED 代表传输连接建立,双方进入数据传送状态
FIN-WAIT-1 主动关闭,主机已发送关闭连接请求,等待对方确认
FIN-WAIT-2 主动关闭,主机已收到对方关闭传输连接确认,等待对方发送关闭传输连接请求
TIME-WAIT 完成双向传输连接关闭,等待所有分组消失
CLOSE-WAIT 被动关闭,收到对方发来的关闭连接请求,并已确认
LAST-ACK 被动关闭,等待最后一个关闭传输连接确认,并等待所有分组消失
CLOSING 双方同时尝试关闭传输连接,等待对方确认
客户端的典型状态转移

    客户端通过connect系统调用主动与服务器建立连接connect系统调用首先给服务器发送一个同步报文段,使连接转移到SYN_SENT状态。
    此后connect系统调用可能因为如下两个原因失败返回:
    1、如果connect连接的目标端口不存在(未被任何进程监听),或者该端口仍被处于TIME_WAIT状态的连接所占用(见后文),则服务器将给客户端发送一个复位报文段,connect调用失败。
    2、如果目标端口存在,但connect在超时时间内未收到服务器的确认报文段,则connect调用失败。
    connect调用失败将使连接立即返回到初始的CLOSED状态。如果客户端成功收到服务器的同步报文段和确认,则connect调用成功返回,连接转移至ESTABLISHED状态

    当客户端执行主动关闭时,它将向服务器发送一个结束报文段,同时连接进入FIN_WAIT_1状态。若此时客户端收到服务器专门用于确认目的的确认报文段,则连接转移至FIN_WAIT_2状态。当客户端处于FIN_WAIT_2状态时,服务器处于CLOSE_WAIT状态,这一对状态是可能发生半关闭的状态。此时如果服务器也关闭连接(发送结束报文段),则客户端将给予确认并进入TIME_WAIT状态
    客户端从FIN_WAIT_1状态可能直接进入TIME_WAIT状态(不经过FIN_WAIT_2状态),前提是处于FIN_WAIT_1状态的服务器直接收到带确认信息的结束报文段(而不是先收到确认报文段,再收到结束报文段)

    处于FIN_WAIT_2状态的客户端需要等待服务器发送结束报文段,才能转移至TIME_WAIT状态,否则它将一直停留在这个状态。如果不是为了在半关闭状态下继续接收数据,连接长时间地停留在FIN_WAIT_2状态并无益处。连接停留在FIN_WAIT_2状态的情况可能发生在:客户端执行半关闭后,未等服务器关闭连接就强行退出了。此时客户端连接由内核来接管,可称之为孤儿连接(和孤儿进程类似)。
    Linux为了防止孤儿连接长时间存留在内核中,定义了两个内核参数:
    /proc/sys/net/ipv4/tcp_max_orphans 指定内核能接管的孤儿连接数目
    /proc/sys/net/ipv4/tcp_fin_timeout 指定孤儿连接在内核中生存的时间
TCP超时重传

    异常网络状况下(开始出现超时或丢包),TCP控制数据传输以保证其承诺的可靠服务
    TCP服务必须能够重传超时时间内未收到确认的TCP报文段。为此,TCP模块为每个TCP报文段都维护一个重传定时器,该定时器在TCP报文段第一次被发送时启动。如果超时时间内未收到接收方的应答,TCP模块将重传TCP报文段并重置定时器。至于下次重传的超时时间如何选择,以及最多执行多少次重传,就是TCP的重传策略
    与TCP超时重传相关的两个内核参数:
    /proc/sys/net/ipv4/tcp_retries1,指定在底层IP接管之前TCP最少执行的重传次数,默认值是3
    /proc/sys/net/ipv4/tcp_retries2,指定连接放弃前TCP最多可以执行的重传次数,默认值是15(一般对应13~30min)
拥塞控制

    TCP为提高网络利用率,降低丢包率,并保证网络资源对每条数据流的公平性。即所谓的拥塞控制
    TCP拥塞控制的标准文档是RFC 5681,其中详细介绍了拥塞控制的四个部分:慢启动(slow start)、拥塞避免(congestion avoidance)、快速重传(fast retransmit)和快速恢复(fast recovery)。拥塞控制算法在Linux下有多种实现,比如reno算法、vegas算法和cubic算法等。它们或者部分或者全部实现了上述四个部分
    当前所使用的拥塞控制算法
    /proc/sys/net/ipv4/tcp_congestion_control
TCP协议

    传输层通过port号,确定应用层协议
    Port number:
    tcp:传输控制协议,面向连接的协议;通信前需要建立虚拟链路;结束后拆除链路
            0-65535
    udp:User Datagram Protocol,无连接的协议
            0-65535
    IANA:互联网数字分配机构(负责域名,数字资源,协议分配)
             0-1023:系统端口或特权端口(仅管理员可用) ,众所周知,永久的分配给固定的系统应用使用,22/tcp(ssh), 80/tcp(http), 443/tcp(https)
             1024-49151:用户端口或注册端口,但要求并不严格,分配给程序注册为某应用使用,1433/tcp(SqlServer),1521/tcp(oracle),
3306/tcp(mysql),11211/tcp/udp(memcached)
    49152-65535:动态端口或私有端口,客户端程序随机使用的端口

    其范围的定义:/proc/sys/net/ipv4/ip_local_port_range

原创文章,作者:木,如若转载,请注明出处:http://www.178linux.com/75031

(0)
木
上一篇 2017-05-08 22:35
下一篇 2017-05-08 22:58

相关推荐

  • N21-北京-兔锅-马哥教育网络班21期+第3周课程练习

    1、列出当前系统上所有已经登录的用户的用户名,注意:同一个用户登录多次,则只显示一次即可。    who | cut -d' ' -f1 | uniq   2、取出最后登录到当前系统的用户的相关信息。    who | ta…

    系统运维 2016-07-07
  • Linux程序包管理(一)RPM使用

    Linux程序包管理 在早期我们使用源代码的方式安装软件时,都需要先把源程序代码编译成可执行的二进制应用程序,然后进行安装。意味着每次安装软件都需要经过 预处理 –> 编译 –> 汇编–> 链接, 这个复杂的过程。为简化安装步骤,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提…

    Linux干货 2016-06-01
  • corosync+pacemaker+drbd+mysql来实现mysql的高可用和数据的同步

    实现拓扑图: 实验流程: 先对两主机安装上corosync和pacemaker 两主机安装drbd服务,并且设置好drbd的组设备 选择drbd主节点上,进行数据库的初始化 进行资源的定义和配置 测试 实验前,我们还需要做一些准备工作: 1、时间必须保持同步   使用ntp服务器 2、节点必须名称互相通信    解析节点名称 &…

    Linux干货 2015-11-10
  • (总结)RHEL/CentOS 7.x的几点新改变

    PS:RHEL7和CentOS7出来有一段时间了,拿出点时间研究下,有几个地方跟6和5系列相比改变比较大,估计不少童鞋有点不太习惯。下面简要举例说明改变比较大的要点: 一、CentOS的Services使用了systemd来代替sysvinit管理 1、systemd的服务管理程序:systemctl是主要的工具,它融合之前service和chkconfig…

    Linux干货 2015-02-10
  • 文件查找命令find

      在文件系统上常常需要根据文件的各种属性去查找符合条件的文件。在Linux下也有相当优异的查找命令。今天只要将find和locate。find通常不常用,因为速度慢!通常我们先使用locate来进行模糊查找,如果真找不到了,才以find来查找。为什么呢?因为locate是利用数据库来查找数据,所以速度非常快,而且并没有实际查询硬盘比较省时间。 l…

    Linux干货 2016-08-22
  • 第二周 N28

    作业二

    2017-12-10