那些年我们一起追过的缓存写法(三)

上次我们说了多级缓存,本章详细介绍下内存缓存该如何设计。

一:分析设计

假设有个项目有一定并发量,要用到多级缓存,如下:

那些年我们一起追过的缓存写法(三)

在实际设计一个内存缓存前,我们需要考虑的问题:

1:内存与Redis的数据置换,尽可能在内存中提高数据命中率,减少下一级的压力。

2:内存容量的限制,需要控制缓存数量。

3:热点数据更新不同,需要可配置单个key过期时间。

4:良好的缓存过期删除策略。

5:缓存数据结构的复杂度尽可能的低。

关于置换及命中率:我们采用LRU算法,因为它实现简单,缓存key命中率也很好。

LRU即是:把最近最少访问的数据给淘汰掉,经常被访问到即是热点数据。

关于LRU数据结构:因为key优先级提升和key淘汰,所以需要顺序结构。我看到大多实现,都采用链表结构、

即:新数据插入到链表头部、被命中时的数据移动到头部。 添加复杂度O(1)  移动和获取复杂度O(N)。

有没复杂度更低的呢? 有Dictionary,复杂度为O(1),性能最好。 那如何保证缓存的优先级提升呢?

二:O(1)LRU实现

我们定义个LRUCache<TValue>类,构造参数maxKeySize 来控制缓存最大数量。

使用ConcurrentDictionary来作为我们的缓存容器,并能保证线程安全。

1
2
3
4
5
6
7
8
9
10
11
12
publicclassLRUCache<TValue> : IEnumerable<KeyValuePair<string, TValue>>
   {
       privatelongageToDiscard =0; //淘汰的年龄起点
       privatelongcurrentAge =0;       //当前缓存最新年龄
       privateintmaxSize =0;         //缓存最大容量
       privatereadonly ConcurrentDictionary<string, TrackValue> cache;
       publicLRUCache(intmaxKeySize)
       {
           cache =newConcurrentDictionary<string, TrackValue>();
           maxSize = maxKeySize;
       }
   }

上面定义了 ageToDiscard、currentAge 这2个自增值参数,作用是:标记缓存列表中各个key的新旧程度。

核心实现步骤如下:

1:每次添加key时,currentAge自增并将currentAge值分配给这个缓存值的Age,currentAge始终增加。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
publicvoidAdd(string key, TValue value)
       {
           Adjust(key);
           var result =newTrackValue(this, value);
           cache.AddOrUpdate(key, result, (k, o) => result);
       }
       publicclassTrackValue
       {
           publicreadonly TValue Value;
           publiclongAge;
           publicTrackValue(LRUCache<TValue> lv, TValue tv)
           {
               Age = Interlocked.Increment(ref lv.currentAge);
               Value = tv;
           }
       }

2:在添加时,如超过最大数量。检查字典里是否有ageToDiscard年龄的key,如没有循环自增检查,有则删除、添加成功。

ageToDiscard+maxSize= currentAge ,这样设计就能在O(1)下保证可以淘汰旧数据,而不是使用链表移动。

1
2
3
4
5
6
7
8
9
10
11
12
13
publicvoidAdjust(string key)
        {
            while(cache.Count >= maxSize)
            {
                longageToDelete = Interlocked.Increment(ref ageToDiscard);
                var toDiscard =
                      cache.FirstOrDefault(p => p.Value.Age == ageToDelete);
                if(toDiscard.Key ==null)
                    continue;
                TrackValue old;
                cache.TryRemove(toDiscard.Key, out old);
            }
        }

过期删除策略

大多数情况下,LRU算法对热点数据命中率是很高的。 但如果突然大量偶发性的数据访问,会让内存中存放大量冷数据,也就是缓存污染。

会引起LRU无法命中热点数据,导致缓存系统命中率急剧下降。也可以使用LRU-K、2Q、MQ等变种算法来提高命中率。

过期配置

1:我们通过设定、最大过期时间来尽量避免冷数据常驻内存。

2:大多数情况每个缓存的时间要求不一致的,所以在增加单个key的过期时间。

1
2
3
4
5
6
privateTimeSpan maxTime;
publicLRUCache(intmaxKeySize,TimeSpan maxExpireTime){}
 
 //TrackValue增加创建时间和过期时间
publicreadonly DateTime CreateTime;
publicreadonly TimeSpan ExpireTime;

删除策略

1:关于key过期删除,最好使用定时删除了。 这样可以最快释放被占用的内存,但很明显,大量的定时器对CPU吃不消的。

2:所以我们采用惰性删除、在获取key的时检查是否过期,过期直接删除。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
publicTuple<TrackValue, bool> CheckExpire(string key)
        {
            TrackValue result;
            if(cache.TryGetValue(key, out result))
            {
                var age = DateTime.Now.Subtract(result.CreateTime);
                if(age >= maxTime || age >= result.ExpireTime)
                {
                    TrackValue old;
                    cache.TryRemove(key, out old);
                    returnTuple.Create(default(TrackValue),false);
                }
            }
            returnTuple.Create(result,true);
        }

3:惰性删除虽然性能最好,对于冷数据来说,还是没解决缓存污染问题。  所以我们还需定期清理。

比如:开个线程,5分钟去遍历检查key一次。这个策略根据实际场景可配置。

1
2
3
4
5
6
7
publicvoidInspection()
        {
            foreach (var item inthis)
            {
                CheckExpire(item.Key);
            }
        }

惰性删除+定期删除基本能满足我们需求了。

总结

如果继续完善下去,就是内存数据库的雏形,类似redis。

比如:增加删除key的通知,增加更多数据类型。 本篇也是参考了redis、Orleans的实现。

原创文章,作者:stanley,如若转载,请注明出处:http://www.178linux.com/688

(0)
stanleystanley
上一篇 2015-03-04
下一篇 2015-03-04

相关推荐

  • 文本处理三剑客之awk

    一、知识整理 1、awk报告生成器,格式化文本输出 发明人:a.k.a. Aho,Kernighan,weinberger awk程序通常由:BEGIN语句块、能够使用模式匹配的通用语句块、END语句块三部分组成。program通常是放在单引号或双引号中。 基本用法:awk [] ‘program’ var=value fiel… pr…

    Linux干货 2016-09-26
  • 文本处理三剑客之sed

    概述     经过上篇对正则表达式和grep相关内容的学习,我们对文本处理有了一个初步的认识,本篇将简要介绍一下文本处理三剑客之sed。具体分为以下几个部分:     1、sed原理概述     2、sed命令详解 第一部分 &n…

    Linux干货 2016-08-10
  • 26期网络班

    26期网络班

    Linux干货 2016-12-26
  • vim小结

    1. 简介 Vim(Vi[Improved])编辑器是功能强大的跨平台文本文件编辑工具,继承自Unix系统的Vi编辑器,支持Linux/Mac OS X/Windows系统,利用它可以建立、修改文本文件。进入Vim编辑程序,可以在终端输入下面的命令: $vim [filename] 其中filename是要编辑器的文件的路径名。如果文件不存在,它将…

    Linux干货 2016-08-12
  • 计算机组成及Linux基础

    第1题:描述计算机的组成及功能 1.1计算机的组成       计算机是有 运算器,控制器,存储器,输入设备和输出设备组成计算机 1.2计算机各部件功能 运算器 对数据进行算术运算,逻辑运算和对数据进行加工处理 存储器 存储程序,数据和各种信号,命令等信息,并在需要时提供这些信息 控制器 是整个计算机的中枢神…

    Linux干货 2017-07-02
  • 网络管理(二)之IP地址划分子网、多块网卡共用单一IP

    网络管理(二)IP地址   一、认识学习IP地址的组成: 1、它们可唯一标识IP 网络中的每台设备 2、IP地址由两部分组成: 网络ID:标识网络;每个网段分配一个网络ID 主机ID:标识单个主机;由组织分配给各设备 3、点分十进制计法表示IPv4地址: 4、如下图,将系统中的IP地址用二进制表示,再通过转换合成的十进制数,使用ping命令可得出:…

    Linux干货 2016-09-05